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Context

Continual learning is a long-standing challenge in artificial intelligence, aiming to train models to
retain and refine their learning, thereby enabling them to perform a wider, more complex range of
tasks through growing experience. However, neural networks are usually faced with the phenomenon
of catastrophic forgetting, namely a performance drop on past data when updated using novel data
[McCloskey and Cohen, 1989].

Today, so-called foundation models, trained on enormous datasets, have come close to or even sur-
passed human-level performance for a wide range of perceptual and generative tasks, from image clas-
sification to text summarization [Achiam et al., 2023, Radford et al., 2021]. Large pre-training boosts
transferability and generally improves continual learning performance [Feillet et al., 2025]. However,
foundation models have not eliminated the need for continual learning algorithms.

First, general-purpose pre-trained models often require an additional adaptation step to achieve
optimal performance in specific domains (e.g., industrial images, medical text, etc.). Adapting these
models without compromising their generalizability is a challenging task, as it risks overfitting to
the target training corpus. Second, despite most of the computational effort being allocated to the
pre-training phase, computational efficiency remains an issue, particularly when adapting large-scale
models. Third, it would be more efficient to cumulatively enhance a pre-trained model to perform new
tasks, rather than developing a specific, adapted model for each task. This is the purpose of continual
pre-training [Roth et al., 2024, Cossu et al., 2024]. Hence, continual learning is a rising topic in the
era of foundation models.

Fostered by the works on pre-training of large language models, parameter-efficient fine-tuning
(PEFT) methods such as Adapters [Houlsby et al., 2019] and LoRA [Hu et al., 2021] are now widely
used across various deep learning architectures and applications. PEFT is also considered in the context
of continual learning; for example, [He et al., 2025] proposes an adaptation of LoRA for a sequence
of tasks. Alternatively, [Lin et al., 2025] designs a sparse memory layer to tackle efficient fine-tuning
on question-answering corpora. Overall, continual learning via parsimonious updates is a promising
line of research to address a sequence of learning tasks efficiently while preserving previously learned
capabilities to tackle future tasks.

In this context, this internship will focus on sparse update methods to tackle a con-
tinual pre-training problem. Depending on the candidate’s profile, we will focus either on image
classification using vision and language-vision models (e.g., CLIP) or on a textual question-answering
task.



Objectives of the internship

The aim of the internship is to review, implement, benchmark, and improve state-of-the-art continual
learning methods that rely on parsimonious updates.

We propose to focus on (i) continual low-rank adaptation [He et al., 2025, Wistuba et al., 2023]
and (ii) sparse update methods [Yildirim et al., 2024, Lin et al., 2025, Wang et al., 2022a] (i.e. sparse
gradient updates).

Other baseline methods for continual pre-training include classic full fine-tuning, prototype-based
methods [Ostapenko et al., 2022, McDonnell et al., 2023] and prompt-based methods [Wang et al., 2022b,
Wei et al., 2022]. Multimodal models also offer competitive zero-shot learning capabilities [Radford et al., 2021,
Liu et al., 2025, Kojima et al., 2022]. Finally, we will also compare continual pre-training against test-
time adaptation methods [Eddine Marouf et al., 2023]

For the continual pre-training task, we propose to rely on the framework of [Roth et al., 2024] for
image classification, or to build on [Lin et al., 2025] for question answering.

The main steps of the internship can be summarized as follows:
• Literature review: getting familiar with the continual learning framework, identifying the main
methods of the state-of-the-art

• Implementation: ensure compatibility of evaluation set-ups of existing implementations, im-
plement missing methods.

• Benchmark: define experiment settings and run experiments to compare the selected algorithms
on the task of continual pre-training.

• Improvements: based on the knowledge and experience gathered through the previous steps
of the internship, propose improvements for existing algorithms.

Applicant Profile

Education: You are pursuing an engineering degree (M1/M2) or a Master’s program specializing in
a scientific field related to machine learning, computer science, applied statistics or signal processing.
You have followed theoretical courses in machine learning and gained practical experience in deep
learning related projects.

Technical Skills:
• Proficiency in Python and familiarity with deep learning libraries such as TensorFlow/Keras or
PyTorch.

• Experience in computer vision and/or NLP.

Other Skills:
• Fluent in French and/or English (spoken and written).
• Strong analytical abilities. Ability to communicate about your work.
• Ability to work autonomously and take the initiative.

Working at LISN

The Interdisciplinary Laboratory of Numérical Sciences (Laboratoire Interdisciplinaire des Sciences du
Numérique – LISN) is a joint research unit of CNRS, Université Paris-Saclay, INRIA, and Centrale-
Supélec. With over 400 members, it leads multidisciplinary research at the crossroads of artificial
intelligence, physics, and the humanities. This internship will take place in the Department of Lan-
guage Sciences and Technologies, which studies fundamental questions relating to linguistic systems
and develops statistical learning models adapted to natural language processing.

Address : LISN – Site Belvédère
Campus Universitaire, bât.507 - Rue du Belvédère F- 91405 - Orsay 91400 - ORSAY



Contact

• Eva Feillet, Université Paris-Saclay, LISN.
eva [point] feillet [at] universite-paris-saclay [point] fr

• Sahar Ghannay, Université Paris-Saclay, LISN, sahar [point]ghannay [at] lisn [point] fr
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